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INTRODUCTION
Modern measurement techniques allow researchers to gather ever 
more data in less time. In many cases, however, the primary or 
raw data have to be further analyzed, be it for the verification of 
a quantitative model (theory or hypothesis) thought to describe 
experimental data, quantitative comparison with other data,  
better visualization or simply data reduction. To this end, a wealth 
of information collected during a measurement or a series of  
measurements has to be reduced to a few characteristic parameters. 
This can be done by regression analysis, a statistical tool to find  
the set of parameter values that best describes the experimental data 
by assuming a certain relationship between two or more variables. 
Although many powerful and dedicated software packages have 
been developed for regression analysis, the most widely distributed 
regression tool is the Solver add-in bundled with Microsoft Excel.

We first describe the following important terms and concepts 
used in regression analysis: independent variable; dependent 
variable; dataset; regression equation; coefficient/parameter; best 
fit/solution; constraint; sum of squared residuals; simple, multi-
ple, linear, and nonlinear regression; and starting/initial values.  
Then, we list some examples in which Solver was used to fit or 
simulate data. Specific advantages and disadvantages of Solver  
with respect to other data fitting programs as well as general limi-
tations and pitfalls inherent in nonlinear regression analysis are 
also addressed. The core part of the protocol lays out a general 
fitting strategy and explains the application of Solver to a typi-
cal nonlinear regression problem encountered in biochemical 
research. Finally, we discuss a more difficult example to highlight 
some of the most common problems and pitfalls encountered  
in fitting experimental data.

Fundamentals of regression analysis
Quantitative experiments aim at characterizing a relationship 
between an independent variable (x), which is varied through-
out a measurement, and a dependent variable (y

obs
), which  

is observed/measured as a function of the former. The fitting 
method presented in this protocol requires that the independ-
ent variable can be measured with much greater precision than 
the dependent variable1. In other words, experimental errors 

(uncertainties) in the independent variable are small com-
pared with errors in the dependent variable (see below). This  
is usually the case with experiments in which the value of the  
independent variable follows a predetermined trajectory and  
the experimental readout reports on the value of the dependent 
variable.

The primary output of a measurement is a set of conjugated 
independent and dependent variables, which is called data or 
dataset. In addition to an experimental dataset, regression analysis 
requires a regression equation (also termed fitting function). This 
is a mathematical relationship describing the dependence of the 
dependent variable on the independent variable using one or more 
parameters. These parameters (also called adjustable parameters, 
fitting parameters or coefficients) are the same for every data point, 
i (i.e., every combination of x

i
 and y

i
). In the simplest example of  

a proportionality (y  =  a × x), the only parameter, a, is the slope  
of a straight line through zero.

With these tools at hand and using a suitable computer pro-
gram, one can employ regression analysis to find the combination 
of parameter values that best describes the experimental dataset. 
This combination of parameters is called the best fit or the solution. 
However, not every mathematically correct solution is physically 
possible or meaningful. For instance, temperature cannot fall below 
absolute zero. Mathematical relationships imposing such limits 
(e.g., T(K) > 0, where T is the absolute temperature) are called 
constraints and can, or in some cases must, be provided in order 
for regression analysis to find a reasonable solution. Furthermore, 
constraints may help reduce the parameter value space that the 
regression routine has to sample, which is particularly useful for 
regression equations containing many parameters.

The decision as to which combination of parameters describes  
an experimental dataset best is most commonly done by least-
squares fitting (LSF), i.e., by minimizing the sum of squared  
residuals (SSR). In this context, a residual is defined as the  
difference (δ) between an observed/measured data point (y

obs
) 

and its calculated counterpart (y
calc

). The sum runs over all data  
points to be considered for regression analysis. Provided that the 
experimental errors in the dependent variable follow a Gaussian 
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(also known as normal) distribution with a mean of zero, the  
combination of parameter values having the lowest SSR has the 
highest probability of being correct. In a Gaussian distribution, 
small errors are more probable to occur than large ones. More pre-
cisely, for a very large number of independent replicate measure-
ments, the frequency with which a certain error occurs follows a 
symmetrical bell-shaped function. A mean of zero implies that this 
distribution is centered at zero, such that errors are equally probable 
to be positive or negative. For many, but not all, experimental setups 
typically encountered in a biochemical or biophysical laboratory, 
errors (from pipetting, weighing, diluting, instrument noise, and 
so on) are or can be approximated to be distributed in a Gaussian 
way. For further discussion whether a particular dataset can be  
fitted reasonably using LSF, see reference 2.

Regression analysis comes in different forms: simple, multiple, 
linear and nonlinear. In simple regression analysis, there is only one 
independent variable, whereas multiple regression analysis handles 
several independent variables. In general, there can be as many 
dependent and independent variables as experimentally possi-
ble and reasonable (e.g., one can simultaneously record absorb-
ance, conductivity and light scattering data when performing size  
exclusion chromatography). Linear regression analysis or linear 
least-squares fitting (LLSF) refers to regression equations that are 
linear in their parameters (this, of course, includes but is not limi
ted to equations that are linear themselves). By contrast, nonlinear 
regression analysis or nonlinear least-squares fitting (NLSF) refers 
to equations that are nonlinear in their parameters. For example, 
y  =  a × exp(x) is said to be linear in a because y is linearly propor-
tional to a if the values of all other fitting parameters and of the 
independent variables (here, x) are held constant. Mathematically, 
this is manifested in the first derivative of y with respect to a being 
independent of a: dy/da  =  exp(x). By contrast, y  =  exp(a × x) 
is nonlinear in a because y is not linearly proportional to a if all  
other values are held constant. Here, differentiation of y with  
respect to a yields an expression dependent on a: dy/da  =  x ×  
exp(a × x). The solution to a linear regression problem is  
exact because it can be calculated by analytical means. By contrast, 
nonlinear regression cannot offer an analytical solution, but has to 
rely on iterative procedures to find the best fit. For further reading 
on regression analysis, see one of the pertinent books3–6.

This protocol focuses on the more general case of nonlinear 
regression analysis. The underlying fitting algorithms are based 
on a trial-and-error approach: beginning with starting values  
(also called initial values) for the parameters, these are changed  
during every regression step, and the similarity between the mea
sured and calculated values is analyzed and compared with the 
preceding iteration. The algorithm according to which the para
meter values are altered and analyzed during each step depends on 
the fitting program used and some advanced settings. Excel Solver 
employs the generalized reduced gradient algorithm7; a discussion 
of the mathematical formalism is beyond the scope of this protocol 
but can be found elsewhere8.

Published applications of Solver
Solver has been used in numerous and diverse applications, as 
illustrated by the following examples: modeling of detergent 
mixtures9,10, the hypothalamic–pituitary–ovarian axis11 or physio
logical functions12; estimation of protein-binding capacity13 or 
magnetic relaxation times14; generation of complex pharmaco

kinetic models15–17; microbial population counting18; application 
of game theory to medical management19; analysis of percentile 
growth curves20; optimization of feed formulation in poultry  
science21,22, operating-room allocation23 or production of proteins24, 
small molecules25 or cheese26; calibration of ionization chambers27; 
analysis of electrophysiological measurements28,29 or lumines-
cence lifetime distributions30; deconvolution of chromatographic  
peaks31–35 or thermoluminescence glow curves36; a number of appli-
cations in analytical chemistry37–41; and high-throughput fitting  
of dose–response curves42.

We have employed Solver for deconvoluting absorbance and  
fluorescence spectra43,44, fitting chemical shift perturbations in 
NMR titration experiments (Vargas et al., unpublished data),  
simulating complex multicomponent/multiphase equilibria45 or 
cooperative ligand binding to proteins46, analyzing solubiliza-
tion and reconstitution of lipid vesicles47,48 (for an experimental  
protocol, see ref. 49), and monitoring lipid membrane parti-
tioning and translocation with the aid of uptake and release  
experiments44,50–55 (see ref. 56 for a protocol and an Excel spread-
sheet implementing Solver). The latter application is a particularly 
impressive demonstration of the power of Solver: the interactions 
of many charged proteins, peptides and small molecules with  
lipid membranes can be described by a simple surface parti-
tion equilibrium modulated by electrostatic effects57,58. While  
the partition equilibrium yields the regression equation proper, 
membrane electrostatics have to be accounted for by Gouy–
Chapman theory (or another suitable model). In brief, this means 
that during fitting of the actual regression equation to experimen-
tal data, a nonlinear constraint has to be fulfilled for each data  
point. This is a challenging task that is beyond the capabilities of 
many dedicated fitting programs but is easily handled by Solver 
(see ref. 50 for a detailed description of regression and constraint 
equations). Solver can also easily be called up from a macro  
executable in Excel (see Box 1).

Comparison with other fitting programs
Data analysis using NLSF can be accomplished with the aid of 
many different programs. Examples include Origin (OriginLab, 
Northampton, MA, USA), Prism (GraphPad Software, La Jolla, 
CA, USA) and PSI-Plot (Poly Software International, Pearl River, 
NY, USA), but there is a plethora of other commercial or free  
programs developed for this purpose. Of course, sophisticated 
mathematical software packages like Mathematica (Wolfram 
Research, Champaign, IL, USA) and MathLab (MathWorks, Natick, 
MA, USA) can carry out nonlinear regression, as well. Moreover, 
alternative approaches like genetic algorithms59 may have to  
be implemented for more demanding problems, especially  
those containing numerous adjustable parameters. Most of these 
programs have a wide array of additional features like built-in  
statistical tests to assess the confidence of the best-fit parameter 
values or advanced fitting procedures like automated global fits. 
However, a major problem with specialized fitting programs is that 
they tend to entice non-expert users to adopt a black-box approach, 
so that they can hardly judge on the meaningfulness of the results 
returned by the program. In light of this, the more basic Solver 
may be a better option for most non-expert users wishing to fit 
experimental data by NLSF.

The procedure we describe here for Solver is simple, intuitive 
and fast, and can be implemented without previous knowledge of 
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or experience in data fitting or programming. The vast majority 
of scientists are familiar with the basic tools offered by Excel, such 
as data manipulation or graphing facilities; in fact, a great deal 
of experimental data will eventually be transferred into this or a 
similar spreadsheet program for analysis or visualization. Excel is 
available in most laboratories and can be run on most personal 
computers or laptops, so no additional costs are incurred for dedi-
cated software packages or workstations.

Limitations of regression analysis
General pitfalls of the fitting process itself have to be accounted for 
regardless of the fitting equation used. NLSF requires that all of the 
experimental errors can be attributed to the dependent variable 
and that the values of the independent variable be known precisely, 
that the data points be independent of one another, and that a  
sufficient number of data points be measured (see ref. 2 for a  
discussion of these and other important prerequisites for  
NLSF). Furthermore, a minimum in the SSR corresponds to 
a maximum in the likelihood of having found the correct para
meter values only if the experimental errors in the dependent  

variable follow a Gaussian distribution with a mean of zero2. If this  
condition is not fulfilled, the minimal SSR does not represent  
the highest probability, and opinions diverge over the question  
if NLSF should still be used in such cases2,3. What is clear, how-
ever, is that systematic errors and improper data processing have  
to be avoided altogether. The latter includes nonlinear opera-
tions like taking a logarithm or smoothing, which diminishes the  
information content of the data. By contrast, linear operations  
like addition or subtraction (e.g., of blank values), as well as  
multiplication or division by a constant factor (e.g., normalization), 
are permitted. Moreover, one should keep in mind that NLSF is a 
trial-and-error approach and that there can never be an absolute 
certainty of having found the global SSR minimum unless a system-
atic sampling of all possible combinations of parameter values is 
carried out. Another matter of concern is weighting (see Box 2).

These issues aside, the results of a fitting session have to be inter-
preted cautiously and in the light of the specific problem at hand. 
Not every parameter mathematically extractable through regres-
sion analysis makes sense physically (see Anticipated Results 
for an example), and not every regression equation allowing for a 

Box 1 | Macros 
 �Writing macros is beyond the scope of this protocol, but the following hints may aid users already familiar with this topic to  
incorporate Solver in Visual Basic for Applications (VBA) macros executable in Excel. Macros are particularly valuable for performing 
time-consuming and iterative tasks like confidence assessment (see Steps 11–18). In order to start the Solver add-in within a  
procedure, a reference must be added. To do this, click: TOOLS→REFERENCES→SOLVER in the Visual Basic Editor.
? TROUBLESHOOTING

 Solver can then be called using the syntax
 SolverOk SetCell: = ‘B3’, MaxMinVal: = 3, ValueOf: = ‘0’, ByChange: = ‘B1:B2’
 SolverSolve True
 �Here, SetCell: =  is equal to the Set Target Cell input in Figure 4, MaxMinVal: = 3 is identified with checking Value of: (the third  
option in the Equal To selection; analogously, 1 stands for Max and 2 for Min), ValueOf: =  specifies the target value, and  
ByChange: =  tells the program which cells to vary during optimization. The parameters given above correspond to those displayed in 
Figure 4 for our example. Defined names (see Box 3 for details on naming cells) can be used instead of cell addresses (for instance, 
ByChange: = ‘v_max, K_m’ instead of the above). The term SolverSolve True is not necessary to run Solver but serves to replace 
manual confirmation (by clicking OK) upon completion of each fitting session. For further reading on advanced Excel solutions for 
scientific purposes, consult the excellent textbook of De Levie1.

Box 2 | Weighting 
 �The use of an unweighted SSR implies that the experimental errors of all data points included in the fit follow the same Gaussian dis-
tribution having the same mean (µ  =  0) and the same standard deviation (σ). There are, however, scenarios where σ varies consider-
ably over the range of recorded data. This should be accounted for by giving different data points a different weight, i.e., a different 
impact on the SSR.
 �  In its most general form, a weighted SSR is given by: SSR obs calc= −∑ w y yi i i

i

( ), ,
2 , where wi is the weighting factor for the ith data 

point. Thus, data points with higher weighting factors contribute more to the SSR than those given less weight. The special case of 
wi  =  1 for all i corresponds to an unweighted SSR.
  The question then remains as to a meaningful and justified choice of weighting factors. Weighting by observed variability is a  
theoretically simple approach relying on the standard deviation of the ith data point, σi: SSR ,obs ,calc= −∑ (( )/ )y yi i i

i

s 2 . This 

weighted SSR is also known as χ2 value. From a practical viewpoint, however, this weighting method can be of limited utility because 
it might require that the standard deviation for each data point be determined from a fairly large number of replicate experiments 
(usually several dozen). Another important weighting scheme is relative weighting: SSR ,obs ,calc ,obs= −∑ (( )/ )y y yi i i

i

2 . This approach 

is practically straightforward and is applicable whenever the error scales with the value of the measured variable. Discussions and  
comparisons of weighting methods can be found in the literature5,60.
  Once appropriate weighing factors have been determined, they can easily be included in Step 6 of the standard protocol by putting 
them into column H, changing the formula in column G2 to  = H2*(E2–F2)^2, and copying or dragging this formula down into the 
following cells in column G.
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good fit is an appropriate description of the underlying relationship 
between independent and dependent variables. These precautions, 
however, pertain not to the fitting process as such but to the choice 
of regression equation.

General fitting strategy
Data fitting with the aid of Solver can be divided into the following 
stages: (i) an Excel worksheet is set up. Experimental data are pasted 
and plotted, and simulated data are calculated using a regression 
equation and plotted, too. If applicable and necessary, data process-
ing like normalization and baseline subtraction should be completed 
first. The squared residuals between observed and calculated data 
are computed and summed up. Before moving on, the adjustable 
parameters should be varied to get a feel of the influence of each 
parameter on the calculated curve and to determine reasonable 
starting values. (ii) The Solver add-in is prepared. Cells containing 
the values to be changed (the fitting parameters) and the value to be 
minimized (the SSR) are specified. Solver options may be adapted 
and constraints can be added if necessary. (iii) The fitting procedure 
is carried out by running Solver. This is repeated several times using 
different starting values for the adjustable parameters. Although this 
approach cannot guarantee finding the global SSR minimum, it does 
decrease the probability of unwittingly getting stuck in a local mini-
mum. (iv) The confidence of the best-fit parameter values is assessed 
by repeating the fitting procedure while fixing the parameter to be 
scrutinized at a value slightly different from the optimal one.

After determining the best-fit parameter values, two important 
questions have to be answered: how good is the agreement between 
experimental data and fit, and how much confidence can be put 
in the best-fit parameter values returned by nonlinear regression? 
These two issues are sometimes confused, but it is crucial to appre-
ciate the fundamental difference between them. The question of 
goodness of fit refers to the extent to which a dataset calculated 
assuming a certain fitting equation can approach the experimental 
dataset. The SSR and related (i.e., weighted or normalized) quan-
tities, such as the χ 2 value (see Box 2) or the root-mean-square 
deviation (RMSD), are measures of the goodness of fit. For a given 
dataset and fitting equation, the goodness of fit generally increases 
with decreasing number of data points or increasing number of 
fitting parameters. Most importantly, the goodness of fit contains 
absolutely no information about the confidence of the fitted para
meter values, which generally increases with increasing number of 
data points or decreasing number of fitting parameters.

Thus, a different quantity is needed to describe confidence. To this 
end, virtually all commercial NLSF programs compute some kind 
of standard error or standard deviation which is displayed along 
with the corresponding best-fit value. Automatic generation of such 
confidence intervals might appear convenient but can be highly 
misleading. The underlying calculations are based on a series of lin-
ear approximations that are never fulfilled for NLSF. This invariably 
results in an underestimation of the real uncertainties60,61, which 
becomes particularly problematic for small datasets and strongly 
correlated parameters5. A robust solution to this problem that can 
easily be implemented in a spreadsheet program consists in perturb-
ing one of the fitting parameters from its best-fit value and recording 
how the SSR is affected on fitting the remaining parameters2,5,62,63.  
Parameter values for which the SSR exceeds a certain threshold 
can then be used as measures of confidence for that parameter. 
Using this approach may be less convenient than relying on  

statistical parameters reported by other fitting programs. However, 
it provides a more realistic picture and a much deeper understand-
ing of the confidence with which the desired information can be 
extracted from the experimental data at hand (see Anticipated 
Results for an example in which commercial fitting programs 
suggest a misleadingly narrow confidence interval for an extremely 
poorly defined parameter).

Example of nonlinear regression: enzyme kinetics
A prominent example of a regression equation that is nonlinear in its 
parameters is the Michaelis–Menten equation64 describing enzyme 
kinetics. The Michaelis–Menten equation gives the initial velocity of  
an enzymatic reaction, v, in dependence on the concentration of sub-
strate, [S]: v v K= +max [ ]/( [ ])S Sm . Here v

max
 is the maximal velocity  

(for [S] → ), and K
m

 is the Michaelis–Menten constant (i.e., the 
substrate concentration at which the initial velocity is half the maxi
mal velocity). In this example, [S] is the independent variable (x in 
generic terminology), v is the dependent variable (y), and v

max
 and 

K
m

 are the fitting/adjustable parameters. Reasonable constraints  
for this case would be v

max
 ≥ 0 mM s−1 and K

m
 > 0 mM to avoid  

division by zero for the first data point (in the absence of substrate, 
[S]  =  0 mM).

In times when computers were not yet omnipresent, lineari
zation approaches like the Lineweaver–Burk plot65 were frequently 
employed to circumvent nonlinear regression analysis. Although 
such plots may be of great didactic value, their principal draw-
back is that processing data in any nonlinear way (i.e., subjecting 
them to operations other than, e.g., subtraction of another dataset  
or multiplication by a constant factor) not only transforms the 

Table 1 | Simulated data used for the example discussed in the 
protocol.

[S] (mM) v(mM s − 1)

0  − 2

2.5 153

5 231

10 342

15 396

20 438

30 467

40 505

50 523

60 523

70 539

80 548

90 555

100 554
Data points were simulated using the Michaelis–Menten equation and vmax and Km values determined 
for the conversion of carbon dioxide to carbonic acid catalyzed by carbonic anhydrase at an enzyme  
concentration of 1 µM (taken from ref. 66). A Gaussian random-error term was added to simulate 
experimental errors. [S], substrate concentration (independent variable, x); and v, initial reaction 
velocity (dependent variable, yobs).
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measured values but also distorts the associated experimental errors 
(see ref. 62 for an example). In brief, linearization of data to render 
them amenable to linear regression can have adverse effects on 
the determination of the best-fit parameter values and, therefore, 
should be avoided. Nowadays, hard- and software necessary for 
nonlinear regression has become available to most scientists and 
has thus obviated the need for linearization.

PROCEDURE
Activating Solver ● TIMING 1 min
1|	 Open an Excel workbook.

2|	 Click OFFICE BUTTON → EXCEL OPTIONS → ADD-INS; in the MANAGE drop-down menu, choose EXCEL ADD-INS 
and hit the Go button (Excel 2003: TOOLS → ADD-INS). In the ADD-INS window, check the Solver checkbox (see Fig. 1) 
and click OK. When asked to confirm, choose Yes.
? TROUBLESHOOTING

Setting up worksheet and plotting data ● TIMING 10 min
3|	 Type vmax (the first adjustable parameter of the Michaelis–Menten model) into cell A1 and define the name of cell B1 as 
v_max (see Box 3 for instructions on how to name cells). Type Km (the second adjustable parameter) into cell A2 and define 
the name of cell B2 as K_m. Set vmax to 400 mM s − 1 and Km to 2.0 mM by typing 400 and 2 into cells B1 and B2,  
respectively. See Figure 2 for clarification.

4|	 Use the first row of columns D, E, F and G to denote the corresponding columns as x (mM), yobs (mM s − 1),  
ycalc (mM s − 1) and 2 (mM2 s − 2), respectively. Plug the data listed in Table 1 into columns D and E (x in column D and yobs 
in column E). Graph the data as scatter plot and label the axes. In our example, x is the substrate concentration, [S], and yobs  
is the initial reaction velocity, v.

5|	 Type the regression equation,  = v_max*D2/( K_m+D2) into cell F2. Copy or drag this formula down into the  
following rows of the column, which will be filled with the corresponding ycalc values. Add the calculated data to the graph 
as line plot using a different color for clearer discrimination 
between observed and calculated data. Figure 2 shows the 
resulting Excel worksheet.

6|	 Type  = (E2 − F2)^2 into cell G2 and copy or drag this 
equation down into the rest of the column. This is the squared  
residual (δ 2) between the observed data and data calculated  
using the regression equation. Type SSR into cell A3 and  
 = SUM(G2:G15) (or the corresponding function name in 
your Excel language) into cell B3, which now displays the 
sum of the values listed in column G. The spreadsheet  
in FORMULA AUDITING MODE is shown in Figure 3  
(FORMULA AUDITING MODE can be switched on/off in 
FORMULAS → SHOW FORMULAS (Excel 2003: TOOLS →  
FORMULA AUDITING → FORMULA AUDITING MODE)).
 CRITICAL STEP As an alternative to Step 6, the SSR can 
be calculated directly by typing  = SUMXMY2(E2:E15;F2:
F15) into cell B3. It should, however, be realized that this 
function has rather different names in non-English versions 
of Excel.

Figure 1 | ADD-INS window. Make sure Solver is checked. To call this 
window: OFFICE BUTTON → EXCEL OPTIONS → ADD-INS; in the 
MANAGE menu, choose EXCEL ADD-INS and hit the Go button  
(Excel 2003: TOOLS → ADD-INS).

MATERIALS
EQUIPMENT

Computer equipped with Microsoft Excel 3.0 or newer. Excel Solver was  
developed by Frontline Systems and has been included in every distribution of 
Microsoft Excel since 1990. Solver is not included in the newest version of Excel 
for Mac (Excel 2008) but can be downloaded free of charge from http://www.
solver.com/mac/dwnmacsolver.htm. This protocol was prepared using Office 

•

This protocol provides a step-by-step guide on how to extract 
v

max
 and K

m
 from the dataset in Table 1 through nonlinear regres-

sion and how to assess the confidence of the best-fit values using 
Microsoft Excel Solver. The dataset was simulated on the basis of 
values determined for the conversion of carbon dioxide to carbonic 
acid catalyzed by carbonic anhydrase66; a Gaussian random-error 
term was added to simulate experimental noise.

2007; click paths may vary slightly depending on the Excel distribution used.
Experimental data in x/y form. In the following, we exemplarily use the  
dataset in Table 1, which was simulated using the Michaelis–Menten  
equation including a Gaussian random-error term.
Regression equation describing the data; here, the Michaelis–Menten  
equation given in the last section of the Introduction. 

•

•
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Setting up solver ● TIMING 10 min
7|	 Click DATA → SOLVER (Excel 2003: TOOLS → SOLVER). This opens the SOLVER PARAMETERS window, prompting 
for entries for Set Target Cell, Equal To, By Changing Cells and Subject to the Constraints. Figure 4 shows the entries  
appropriate for our example. Set Target Cell determines which value is to be optimized. When using the least-squares  
procedure, this is the SSR in cell B3, which has to be minimized. This is accomplished by opting for Value of: 0 in the  
Equal To selection (see below). By Changing Cells defines the adjustable parameters, which in our case are vmax and Km  
contained in cells B1 and B2, respectively. Subject to the Constraints offers the relational operators > = ,  <  = ,  = , int and 
bin to impose constraints on the adjustable parameters or any other variables in the spreadsheet. int allows only integer 
values for the specified variable, and bin allows only binary values. Constraints can be added, changed or deleted by clicking 
the corresponding buttons. A useful constraint in the present example is Km > =  0.000001 to prevent division by zero for 
the first data point recorded in the absence of substrate ([S]  =  0 mM).
 CRITICAL STEP Minimization of the target-cell value can, in principle, be carried out by checking the Min checkbox 
in the Equal To selection. However, we have noticed in numerous cases that Solver is more likely to get stuck in a local 
minimum when using this option. Upon checking Value of: 0, the algorithm tries harder to reduce the SSR to zero. As this is 
not perfectly feasible with experimental data, Solver will open a window stating that it was unable to find a solution. This 
message can be ignored.
 CRITICAL STEP More sophisticated Solver settings are available in the SOLVER OPTIONS window, which is accessible by 
clicking the OPTIONS button in the SOLVER PARAMETERS window. Figure 5 shows the default values, which work well in 
most cases. The meanings of these parameters are explained in Box 4.
? TROUBLESHOOTING

Fitting ● TIMING 10 min
8|	 In the SOLVER PARAMETERS window (see Fig. 4), click the Solve button to initialize Solver. At the end of the fitting 
procedure, the SOLVER RESULTS window opens, reporting that no feasible solution could be found. As explained in  
Step 7, this is because of our selection in the SOLVER PARAMETERS window and can be ignored. One can also choose 
to view additional information on the fitting procedure, which in most cases is little enlightening, and therefore can be 
skipped. Hit the OK button in the SOLVER RESULTS window.
? TROUBLESHOOTING

Box 3 | Naming cells 
 �Naming cells is a particularly useful feature in carrying out spreadsheet calculations and fitting or simulating data. In contrast to  
referencing between cells, naming cells lacks the need for protection of absolute references (i.e., references that should not change  
on dragging or copying). Naming saves time and contributes to clarity and transparency, especially when typing lengthy formulas  
containing many variables and coefficients. Naming can be done either by using the menu command FORMULAS→DEFINE NAME 
(Excel 2003: INSERT→NAMES→CREATE) or by highlighting a cell or cell range and typing the desired name into the LABEL 
FIELD, located in the TOOLBAR directly above cell A1.
 �  Names can be assigned to single cells or ranges of cells. The name of a single cell is displayed in the LABEL FIELD whenever 
the cell is activated (e.g., the LABEL FIELD in Fig. 2 displays v_max as cell B1 is activated). The name of a cell range appears in 
the LABEL FIELD only when the entire cell range is activated. For ranges spanning several cells in the same row (or column), the 
calculator will refer to the cell in the same column (or row) as the formula. Names are dragged and dropped with their respective cells. 
Names can be edited or deleted using FORMULAS→NAME MANAGER (Excel 2003: INSERT→NAMES).
 �  No two cells can have the same name, thus naming a cell D3 will not work because this name is already given to cell D3 in the third 
row of the fourth column. When trying to define a name that is already used within the same workbook, the cell to be named will 
remain unnamed, and the previously named cell will be highlighted instead. For further information, consult the Excel manual or one 
of the numerous pertinent books.

Figure 2 | Worksheet after the completion of 
Step 5. Highlighted cell B2 is named v_max,  
as can be seen in the LABEL FIELD  
in the upper left. Columns D and E are filled 
with, respectively, x and yobs data from Table 1,  
and yobs is plotted against x (blue scatter plot). 
Column F contains the values calculated using 
the parameters in cells B1 and B2 and the 
Michaelis–Menten equation, ycalc. Calculated 
values are plotted against x as solid red line.
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9|	 Repeat the fitting procedure by clicking DATA → SOLVER (Excel 2003: TOOLS → SOLVER) and hitting the Solve 
button until the SSR in cell B3 no longer decreases.
? TROUBLESHOOTING

10| Inspect the x/y plot containing the experimental data and the data calculated using the best-fit parameter values returned 
by Solver: vmax  =  598 mM s − 1 and Km  =  7.6 mM in cells B1 and B2, respectively. Experimental and fitted data should resemble 
one another reasonably well, as illustrated in Figure 6. This is reflected in a small SSR value of ~298 mM2 s − 2.
 CRITICAL STEP Once the best fit for a given set of initial parameter values has been found, it is highly advisable to repeat 
the fitting procedure using different starting values for the adjustable parameters to reduce the risk of getting stuck in a local 
rather than the global SSR minimum.
 CRITICAL STEP Visual inspection of the goodness of fit is often facilitated by plotting the residuals (not the squared 
residuals) versus the independent parameter. This helps in judging the quality of the fit and the applicability of the chosen 
regression equation (see ref. 67 for an example of analysis of residual plots).
 CRITICAL STEP The steps outlined thus far yield the vmax and Km values that best fit the experimental data in Table 1 in 
terms of the Michaelis–Menten model. Yet, this procedure affords no information on the confidence to put in the obtained 
values. In contrast to linear regression, simple statistical measures like the standard error or the standard deviation are 
not readily applicable to nonlinear regression analysis. In the following, we describe a straightforward and general way of 
assessing confidence by variation of the SSR near a minimum2,5,62,63.
? TROUBLESHOOTING

Confidence assessment ● TIMING 30 min (15 min per parameter)
11| The basic idea of variation of the SSR near a minimum is to fix one of the adjustable parameters at various values close 
to but different from the optimal solution and to monitor the impact on the SSR on optimizing the other parameters. To this 
end, fix the value of Km at 7.4 mM by typing 7.4 into cell B2 while leaving the value of vmax in cell B1 unchanged. Click  
DATA → SOLVER (Excel 2003: TOOLS → SOLVER) and select only cell B1 in the By Changing Cells option in the  
SOLVER PARAMETERS window. Then, hit the Solve button and repeat this one-parameter fit until the SSR in cell B3 no 
longer decreases. In this example, the SSR will amount to 330 mM2 s − 2. Copy this value as well as the fixed Km and fitted vmax 
values into another worksheet using PASTE SPECIAL: VALUES.

Figure 3 | Worksheet in FORMULA AUDITING 
MODE after the completion of Step 6. Cell B3 
contains the sum of squared residuals (SSR), 
column F the values calculated using the 
Michaelis–Menten equation (ycalc) and column G 
the squared residuals (δ2). yobs and ycalc are plotted 
against x (blue scatter plot and solid red line, 
respectively). FORMULA AUDITING MODE 
can be switched on/off by clicking FORMULAS 
→ SHOW FORMULAS (Excel 2003: TOOLS 
→ FORMULA AUDITING → FORMULA 
AUDITING MODE).

Figure 4 | SOLVER PARAMETERS window with the appropriate values 
for Set Target Cell, Equal To, By Changing Cells and Subject to the 
Constraints. An equally appropriate entry for By Changing Cells would be 
K_m, v_max. To call this window: DATA → SOLVER (Excel 2003: TOOLS 
→ SOLVER).

Figure 5 | SOLVER OPTIONS window with default selection of values 
appropriate for most fitting problems. See Box 4 for further information on 
the settings.
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12| Repeat Step 11 by decreasing the fixed Km value in 0.2-mM increments until the SSR is more than four times greater than 
the best-fit SSR, i.e., >1200 mM2 s − 2. This should be the case for Km  =  6.4 mM, for which the SSR amounts to 1547 mM2 s − 2.

13| Starting from a Km value of 7.8 mM, repeat Step 11 by increasing the fixed Km value in 0.2-mM increments until the SSR 
is more than four times greater than the best-fit SSR, i.e., >1200 mM2 s − 2. This should be the case for Km  =  8.8 mM, for 
which the SSR amounts to 1225 mM2 s − 2.

14| Plot the SSR values calculated in Steps 9 and 11–13 against the corresponding Km values. The resulting diagram should 
show a well-defined minimum at Km  =  7.6 mM, as depicted in Figure 7a. The steepness of the SSR curve on both sides of the 
minimum is a measure of the precision with which the best-fit value can be determined from the given experimental data. 
It is obvious from this plot that the SSR rises sharply (i.e., the goodness of fit decreases dramatically) upon small deviations 
from the optimal Km, indicating that Km can be determined from the given dataset with high confidence.
 CRITICAL STEP Plots of the SSR against one or several adjustable parameters are sometimes rather shallow or extremely 
asymmetric (see Anticipated Results for an example). In such cases, the following Steps (15, 16 and 18) employed to 
derive confidence intervals are not applicable (see Box 5). This emphasizes the importance of visual inspection and judicious 
interpretation of SSR plots.
 CRITICAL STEP Instead of plotting the SSR, the value of the second adjustable parameter (vmax, which is varied in Steps 
11–13) can be plotted against that of the ‘frozen’ parameter. This gives an idea about the correlation (interdependence) of 
the two parameters, i.e., if one parameter changes vigorously upon alteration of the other, then the two parameters are highly 
correlated (interdependent). This can be visualized in a contour plot or a three dimensional graph (see refs. 2,5,62,63 for 
examples).
? TROUBLESHOOTING

15| In cases where the SSR minimum is defined as clearly as in the present example, true confidence intervals can be  
approximated by the following procedure: to calculate a 95% confidence interval for Km, type  = B3*(1  +  2/12*FINV(1-95/ 
100; 2; 12)) into an empty cell in the Excel workbook. This should return a so-called threshold value of 491 mM2 s − 2.  
In the SSR plot, draw a horizontal line at SSR  =  491 mM2 s − 2 and determine the two Km values at which this straight  

Box 4 | Solver options 
 �The default values shown in the SOLVER OPTIONS window in Figure 5 are a good starting point for most fitting tasks. Max Time and 
Iterations define the time and number of iterations, respectively, after which Solver interrupts the fitting procedure and asks whether 
it should continue. Irrespective of these two parameters, Solver can be halted any time during the fitting procedure by pressing the 
ESC key. The value given in the Precision box determines how strictly constraints have to be fulfilled, whereas Tolerance specifies 
how strictly the integer criterion will be applied (if applicable at all). Convergence determines when optimization is considered to be 
achieved: this is the case as soon as five consecutive iterations do not yield a relative change in the target-cell value greater than the 
value specified in this box. If Assume Linear Model is checked, Solver uses linear regression and cannot solve nonlinear problems. 
Assume Non-Negative can be checked whenever none of the adjustable parameters is allowed to become negative. If Use Automatic 
Scaling is enabled, Solver changes the parameter values in relation to the magnitude of the initial values, which is recommended for 
all applications. Checking Show Iteration Results causes Solver to pause after every iteration and display the current values. The  
Estimates, Derivatives and Search options determine the details of the regression process. For difficult problems, it may be  
advantageous to choose Central in the Derivatives option. See the literature7,28 for more information on these advanced settings.

Figure 6 | Worksheet after the completion of Step 10. Cells B1 and B2 contain the best-fit values for vmax and Km, respectively. The solid red line represents 
the best fit (ycalc) to the measured data (yobs; blue scatter).
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line intersects the SSR curve (light gray lines in Fig. 7a). 
The lower and upper values amount to 7.1 and 8.1 mM, 
respectively. Thus, the 95% confidence interval of Km can  
be approximated as 7.1–8.1 mM. See Box 5 for further 
details.

16| Repeat Step 15 for a 99% confidence interval by using 
the formula  = B3*(1  +  2/12*FINV(1-99/100; 2; 12)). 
The threshold value now is 642 mM2 s − 2, which intersects the 
SSR curve at Km values of 7.0 and 8.3 mM (dark gray lines in  
Fig. 7a). Thus, the 99% confidence interval of Km can be  
approximated as 7.0–8.3 mM. See also Box 5.

17| Repeat Steps 11–14 with the second adjustable para
meter to obtain a plot of the SSR versus vmax. In order to 
span the same range of SSR values as above (Steps 12  
and 13), vmax should be fixed at values ranging from 580 to 
620 mM s − 1 using increments of 5 mM s − 1. The resulting  
diagram is presented in Figure 7b. Again, the steep slopes 
on both sides of the minimum indicate that vmax is  
determined with high confidence.
? TROUBLESHOOTING

18| Repeat Steps 15 and 16 with the second adjustable 
parameter to derive 95% and 99% confidence intervals  
of vmax. To this end, use the threshold SSR values calculated 
above (491 and 642 mM2 s − 2, for 95% and 99% confidence intervals, respectively) and determine the vmax values at which the 
corresponding horizontal lines intersect the SSR curve (gray lines in Fig. 7b). The confidence intervals thus obtained should 
be 590–606 mM s − 1 at 95% and 587–609 mM s − 1 at 99% confidence. See also Box 5.

● TIMING
Steps 1–2, Activating Solver: 1 min (provided Solver is installed)
Steps 3–6, Setting up worksheet and plotting data: 10 min
Step 7, Setting up Solver: 10 min
Steps 8–10, Fitting: 10 min (may vary depending on the performance of the computer being used)
Steps 11–18, Confidence assessment: 30 min (15 min per parameter)
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Figure 7 | Confidence assessment of best-fit parameter values. Plots of sum 
of squared residuals (SSR) against (a) Km and (b) vmax. Light and dark gray 
lines mark parameter values at which the SSR amounts to, respectively,  
491 and 642 mM2 s − 2. These parameter ranges correspond to the approximate 
95% and 99% confidence intervals, respectively. Vertical black lines indicate 
best-fit values.

Box 5 | Calculation of confidence intervals using Fisher’s  
F distribution 
 �The connection between an SSR plot (see Fig. 7) and lower and upper confidence intervals at a desired confidence level (P, expressed in 
percent) is established by a threshold SSR value (SSRth). Under certain conditions (as explained below), the latter can be calculated from 

the best-fit SSR value (SSRbf) on the basis of Fisher’s F distribution2,5,62,63: SSR SSRth bf= ⋅ +
−

⋅ − −






1 1 100
M

N M
F P M N M( / ; ; ) . F is the so-called 

upper (1–P/100) quantile of Fisher’s F distribution with M being the number of adjustable parameters and N the number of data points 
included in the fit. The difference N–M is also referred to as the number of degrees of freedom. F can easily be calculated in Excel 
using the formula  = FINV(1−P/100; M; N–M), as shown in Steps 15 and 16 for M  =  2 adjustable parameters (Km and vmax) and N  =  14 
independent data points at confidence levels of 95 and 99%, respectively.
 �  Importantly, application of Fisher’s F distribution is strictly valid only for linear fitting equations2,63. However, if an SSR plot reveals 
a clear minimum with steep slopes on both sides (as in Fig. 7), even a nonlinear fitting equation can be assumed to be approximately 
linear for small deviations from the best-fit value. Then, confidence intervals at a certain confidence level P can be approximated  
according to the above procedure (see Steps 11–18). By contrast, if the minimum in SSR is not that well defined (as in Fig. 9),  
this approximation no longer holds. Nevertheless, lower and upper parameter values can be derived from an arbitrarily chosen  
threshold SSR, but there are no simple means of ascribing a confidence level to parameter ranges thus obtained (see Anticipated 
Results).
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? TROUBLESHOOTING
Troubleshooting advice can be found in Table 2. Further information on specific Solver messages can be found online at 
http://www.solver.com/suppstdmessages.htm.

Table 2 | Troubleshooting table.

Step Problem Possible reason Solution

2 Solver is not listed in the 
ADD-INS window

Solver is not installed Install the Solver add-in from the Microsoft Office 
CD/DVD

7 Solver cannot be found at 
the specified location

Solver is not activated as  
an add-in

Activate the Solver add-in as described  
in Step 2

A graph window is activated Activate any spreadsheet cell. Solver can be run 
only from a spreadsheet

8,9 Error message: ‘Solver  
cannot find a solution to 
the problem’

In the SOLVER PARAMETERS window, 
Value of: 0 is checked in the Equal To  
selection

No problem. Provided that the fitted curve  
resembles the experimental data, ignore the error 
message. See Step 7 for details

Error message: ‘The problem 
is too large for Solver to 
handle’

The Solver version shipped with Microsoft 
Excel can handle up to 200 adjustable 
parameters and 100 constraints on not 
adjustable variables as well as upper and 
lower bounds on all adjustable parameters

Use commercial Solver version (Premium Solver)

Divide dataset into smaller subsets and fit these 
independently (usually not recommended)

10 The calculated curve  
does not approach the 
experimental data points

Poor starting values for the adjustable 
parameters

Try different starting values. Ideally, they should 
be as close as possible to the final values. 
Qualitatively, the calculated curve should resemble 
the experimental data already at the beginning of 
the fitting session

The regression algorithm is not suitable  
for the problem at hand

Use different regression algorithm. In the SOLVER 
OPTIONS window (see Fig. 5), try the Central option 
in the Derivatives selection. See Box 4 for details

The model is poorly scaled In the SOLVER OPTIONS window (see Fig. 5), 
make sure Use Automatic Scaling is checked.  
See Box 4 for details

The model used does not describe the  
experimental data appropriately

Use appropriate model, keeping in mind that  
simply adding more adjustable parameters  
will always result in a better fit. Avoid overfitting 
(see Anticipated Results for an example)

The fitted values and the  
SSR returned by Solver 
depend on the starting 
values

Solver gets stuck in local minima Use starting values close to the expected global 
minimum

(continued)
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ANTICIPATED RESULTS
The protocol outlined above is, in principle, applicable to any other dataset or regression equation, provided that the  
basic prerequisites of NLSF outlined in the Introduction are met. Of course, the adjustable variables in Steps 3 and 7, the 
regression equation in Step 5, as well as the value ranges and increments used during confidence assessment in Steps 11–18 

Table 2 | Troubleshooting table (continued). 

Step Problem Possible reason Solution

Apply a more stringent convergence criterion by 
reducing the value in the Convergence box in  
the SOLVER OPTIONS window (see Fig. 5; lowest 
possible value is 10–300). See Box 4 for details

Use different regression algorithm. In the SOLVER 
OPTIONS window (see Fig. 5), try the Central 
option in the Derivatives selection. See Box 4 for 
details

The model is poorly scaled In the SOLVER OPTIONS window (see Fig. 5), 
make sure Use Automatic Scaling is checked.  
See Box 4 for details

The fitted values returned 
by Solver depend on the 
starting values, but the SSR 
is about the same

Overfitting: experimental data  
are described equally well by different  
solutions

Carry out confidence analysis, as detailed in  
Steps 11–18. If the fitted parameters are not 
defined sufficiently well, fit several datasets  
simultaneously, apply constraints, reduce the 
number of adjustable parameters, optimize  
experimental conditions or use different  
experimental method (see Anticipated Results)

The fitted curve resembles the 
experimental data, but the 
best-fit values are unrealistic

There is a mistake in the  
regression equation

Check and fix regression equation. Pay particular 
attention to units, as these do not show up in 
spreadsheet formulas

The model used does not describe  
the experimental data appropriately

Plot the residuals (δ = yobs − ycalc) against x as  
scatter plot. If the residuals are not distributed 
randomly around zero (i.e., if there are systematic 
deviations), use a different model. Keep in mind 
that simply adding more adjustable parameters  
will always result in a better fit. Avoid overfitting 
(see Anticipated Results)

14,17 Plot of the SSR versus  
an adjustable parameter 
reveals a broad minimum  
or several minima

Overfitting: experimental data are  
described equally well by different  
solutions

Fit several datasets simultaneously, apply  
constraints, reduce the number of adjustable  
parameters, optimize experimental conditions or  
use different experimental method (see ANTICIPATED 
RESULTS). Do not carry out a detailed calculation of 
confidence intervals, as done in Steps 15, 16 and 
18. See Box 5 for details

Box 1 In VBA mode: Solver is not 
listed in the VBA PROJECT 
REFERENCES window

There is no reference between the  
Solver add-in and the VBA code

Go to TOOLS→REFERENCES→BROWSE and  
open Solver in \OFFICE12\LIBRARY\SOLVER 
(Excel 2003: OFFICE11\LIBRARY\SOLVER)
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will have to be adapted. In any case, it is wise to repeat the 
fitting procedure several times using different initial values 
for the adjustable parameters and to subject the best-fit 
values to careful confidence analysis.

The way replicate measurements (repeated measurements 
of the dependent variable at the same value of the inde-
pendent variable) should be considered in a fit depends on 
whether the replicates are dependent on or independent of 
one another. For example, two readings on the same solution 
in a spectrometer are not considered independent, whereas 
readings on two separately prepared solutions are. In the 
case of independent measurements, each data point should 
be included in the fit, whereas dependent measurements 
should be averaged and only the mean should be included  
in the fit.

Finally, it cannot be overemphasized that a good fit in terms of a low SSR need not necessarily imply that the model  
invoked to derive a regression equation and, consequently, the parameter values retrieved from a fitting procedure are  
correct or make sense. The goodness of fit as expressed by the SSR (see Step 9) and confidence intervals of the adjustable 
parameters (see Steps 14–18) only make statements about, respectively, the agreement between experimental and fitted 
data and the reliability with which the best-fit values can be determined from a given dataset. It is of special importance 
here to note the difference between precision and accuracy. Quoting from a textbook on data reduction and error analysis4: 
“The accuracy of an experiment is a measure of how close the result of the experiment is to the true value; the precision is a 
measure of how well the result has been determined, without reference to its agreement with the true value.”

An example of overfitting: thermal unfolding of a protein
Overfitting is probably the single most important pitfall encountered in data fitting. Overfitting refers to any attempt to 
extract more parameter values from an experimental dataset than the latter can actually afford. Thus, the fit is said to  
be underconstrained, or the parameters are underdetermined or redundant. This does not necessarily imply that the  
experimental data are of poor quality; in most cases, it simply means that the chosen experimental method or setup cannot 
unambiguously supply the desired number of parameter values. In any case, overfitting causes the values returned for  
some or all of the adjustable parameters to be imprecise or inaccurate.

This shall be exemplified using the thermal protein unfolding data depicted in Figure 8 (blue circles). In this experi-
ment, the small globular protein RNAse A was unfolded by raising the temperature from 24 to 94 °C, and loss of secondary 
structure was monitored by recording the circular dichroism (CD) signal in the far-UV range (see ref. 68 for an experimental 
protocol). Under equilibrium conditions and making certain assumptions, thermal unfolding of RNAse A and many other  
proteins can be described by the following regression equation:  
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Here the independent variable is T, the absolute temperature and the dependent variable is , the ellipticity at 220 nm 
(given in millidegrees). R is the universal gas constant. The adjustable parameters are: Tm, the midpoint temperature of  
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Figure 8 | Circular dichroism (CD) melting curve of 20 µM RNAse A  
(Sigma–Aldrich, Steinheim, Germany) in 15 mM potassium acetate buffer  
(pH 5.5). Experimental data (blue scatter) and best fit (red line) determined 
with the aid of Excel Solver using seven adjustable parameters. The best  
fit requiring only six fitting parameters is indistinguishable (not shown).  
ε, ellipticity at 220 nm (given in millidegrees); T, temperature (shown in  
°C for convenience).

Table 3 | Best-fit parameter values returned by Solver on fitting the thermal unfolding curve depicted in Figure 8 using either six or 
seven adjustable parameters.

#P Tm ∆Hm ∆Cp f° u° mf mu SSR

(°C) (kJ mol−1) (J (mol K)−1) (mdeg) (mdeg °C−1) (mdeg2)

6 61.6 427 5  − 29.5  − 0.24 0.05  − 0.02 43.234

7 61.6 427 16  − 28.9  − 0.95 0.04  − 0.02 43.045
∆Cp, molar isobaric heat capacity change; f° and u°, ellipticities of, respectively, folded and unfolded protein extrapolated to T = 0 K; ∆Hm, molar enthalpy change on unfolding at Tm; mf and mu, temperature 
dependencies of the ellipticities of, respectively, folded and unfolded protein; #P, number of adjustable parameters; SSR, sum of squared residuals; Tm, midpoint temperature of thermal unfolding.
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thermal unfolding (i.e., the temperature at which half of the 
protein is unfolded); ∆Hm, the molar enthalpy change on 
unfolding at Tm; ∆Cp, the (constant) molar isobaric  
heat capacity change on unfolding; f° and u°, the  
ellipticities of, respectively, folded and unfolded protein 
extrapolated to T  =  0 K; as well as mf and mu, the (constant) 
temperature dependencies of the ellipticities of folded and 
unfolded protein, respectively. Thus, the regression equation 
contains seven fitting parameters, three of which  
(Tm, ∆Hm and ∆Cp) are thermodynamic parameters, whereas 
the other four (f°, u°, mf and mu) are required to represent 
the dependencies of pre- and post-transition baselines on 
temperature. A discussion of the assumptions made in  
deriving the above regression equation is beyond the  
scope of this protocol but can be found elsewhere68.  
Irrespective of this, it is obvious that fitting a simple  
sigmoidal curve with sloping pre- and post-transition  
baselines using seven adjustable parameters is prone  
to serious overfitting.

As illustrated in Figure 8, the best fit (red line) based  
on seven adjustable parameters is excellent and returns the 
values summarized in Table 3. However, Figure 9 reveals 
that the confidence of the best-fit values of some parameters 
is, at best, mediocre (orange lines and symbols). Tm displays 
the highest confidence among the three parameters  
(Fig. 9a), but a plot of the SSR against ∆Hm is strongly 
asymmetric (Fig. 9b), revealing that the SSR is extremely 
insensitive to unrealistically positive deviations from the 
optimal ∆Hm value. Finally, a diagram depicting the depend-
ence of the SSR on ∆Cp (Fig. 9c) is characterized by a broad 
trough ranging from  − 20 J (mol K) − 1 to  + 20 J (mol K) − 1 in 
which the SSR is almost indifferent to ∆Cp. Negative values 
are particularly suspect because unfolding of globular pro-
teins is usually accompanied by an increase in heat capacity. 
In the specific case of RNAse A, direct determination of the 
heat capacity change by differential scanning calorimetry has yielded a value of ∆Cp  =  5 J (mol K) − 1 (ref. 69). The consider-
able deviation between this and the best-fit value of ∆Cp  =  16 J (mol K) − 1 might be surprising at first glance, but inspection 
of Figure 9c reveals that the difference in the SSR is negligible and that the tremendously poor confidence of this parameter 
is because of overfitting.

It is obvious that the complex, asymmetric shapes obtained on plotting the SSR versus ∆Hm or ∆Cp cannot be captured by a 
single parameter, as might be implied by fitting programs reporting a best-fit value ± a standard error or standard deviation. 
To illustrate this point, we analyzed the same dataset using the commercial fitting program Origin. Like most other com-
mercially available software packages for NLSF, this program calculates the so-called asymptotic standard errors. Confidence 
intervals can then be assigned by multiplying these standard errors by an appropriate constant taken from statistical tables5. 
Although Origin determined the same best-fit values as found by Solver, the 95% confidence intervals calculated by Origin 
were only ±0.1 °C for Tm, ±24 kJ mol − 1 for ∆Hm and ±5 J (mol K) − 1 for ∆Cp, which clearly are gross underestimations of the 
real confidence intervals. Also, derivation of asymmetric confidence intervals as outlined above in Steps 15, 16 and 18 is not 
applicable (see Box 5 for details). In the absence of such well-established tools for confidence assessment, lower and upper 
parameter estimates can be obtained by arbitrarily defining a threshold SSR value. In the present example, the dashed lines 
in Figure 9 delimit the parameter ranges within which the SSR does not exceed 125% of the minimal value (as suggested in 
ref. 63). Lower and upper parameter estimates retrieved from such a procedure may help in quantifying the qualitative  
statements of the previous paragraph, but it should be kept in mind that the SSR threshold was chosen arbitrarily and that 
no single quantity can account for the complex shape of the SSR curves.

The problem of overfitting can be minimally alleviated by fixing the ill-behaved parameter at ∆Cp  =  5 J (mol K) − 1, thus 
decreasing the number of fitting parameters to six and slightly improving the confidence of the other adjustable parameters 
(green lines and symbols in Fig. 9a,b). However, the goodness of the best fit in terms of the SSR is virtually unaffected 
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Figure 9 | Confidence assessment of best-fit parameter values. Plots of sum 
of squared residuals (SSR) against (a) midpoint temperature (Tm), (b) molar 
enthalpy change (∆Hm) and (c) molar isobaric heat capacity change (∆Cp). 
Orange lines and symbols refer to a seven-parameter fit (with adjustable 
∆Cp), whereas green lines and symbols refer to a six-parameter fit (with ∆Cp 
fixed at 5 J (mol K)−1). Dashed lines mark parameter values at which the SSR 
amounts to 125% of its minimal value. Vertical black lines indicate best-fit 
values.



protocol

280 | VOL.5 NO.2 | 2010 | nature protocols

  
p

u
or

G  
g

n i
h si l

b
u

P er
u ta

N 010 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc. e r

ut a
n .

w
w

w / /:
pt t

h

because both the best-fit and the independently determined ∆Cp values lie in the SSR trough in Figure 9c. In this particular 
case, further enhancement could be achieved by a number of remedies: (i) the temperature could be scanned over a greater 
range (e.g., 0–100 °C rather than 24–94 °C). This would give greater confidence to the four parameters defining the pre- and 
post-transition baselines, such that the latter could compensate less readily for variations in the thermodynamic parameters. 
(ii) Several experiments carried out under identical conditions might be fitted simultaneously (globally). (iii) Experiments could 
be carried out under various conditions (e.g., different pH values or in the presence of stabilizing or destabilizing additives like 
urea or trimethylamine N-oxide, respectively), and the data could be fitted simultaneously. This would require an additional 
term in the regression equation accounting for the effect of the varied parameter (i.e., a linkage between the influence of 
temperature and the influence of pH or additive). However, as the baselines would be the same for all datasets, the number of 
adjustable parameters per dataset would be reduced (A. Sieber and S. Keller, unpublished data). (iv) In addition to ∆Cp, either 
Tm or ∆Hm might be determined using an independent method, and the remaining thermodynamic parameter could be extracted 
from CD unfolding curves with greater confidence.
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